Compression of LiDAR Data Using Spatial Clustering and Optimal Plane-Fitting
نویسندگان
چکیده
منابع مشابه
Compression of LiDAR Data Using Spatial Clustering and Optimal Plane-Fitting
With the advancement in geospatial data acquisition technology, large sizes of digital data are being collected for our world. These include airand space-borne imagery, LiDAR data, sonar data, terrestrial laser-scanning data, etc. LiDAR sensors generate huge datasets of point of multiple returns. Because of its large size, LiDAR data has costly storage and computational requirements. In this ar...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Spatial data compression via adaptive dispersion clustering
In this article, we introduce a method of spatial data compression, which we call Adaptive Spatial Dispersion Clustering (ASDC). It is specifically designed to reduce the size of a spatial dataset in order to facilitate subsequent spatial prediction. Unlike with traditional data and image compression methods, the goal of ASDC is to create a new dataset that will be used as input into spatial pr...
متن کاملPlane and Boundray Extraction from Lidar Data Using Clustering and Convex Hull Projection
In this paper, we propose a new approach to extract planar patches and boundary from a set of LiDAR point cloud. In the beginning, the 3D point cloud set is partitioned and assigned to fixed-size cubes. Secondly, local planar patches are generated by extracting surface normal vectors within each cube. Finally, the global planes are formed by grouping the planar patches. The boundary of global p...
متن کاملClustering Heterogeneous Data Using Clustering by Compression
Nowadays, we have to deal with a large quantity of unstructured data, produced by a number of sources. The application of clustering on the World Wide Web is essential to getting structured information in response to user queries. In this paper, we intend to test the results of a new clustering technique – clustering by compression – when applied to heterogeneous sets of data. The clustering by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Remote Sensing
سال: 2013
ISSN: 2169-267X,2169-2688
DOI: 10.4236/ars.2013.22008